Monday, March 20, 2017

Lab 3: Non-Constant Acceleration Lab

                             Non-Constant Acceleration Lab
                                        Ian Lin March 8, 2017
This experiment is trying to analyze the numeric and analytical approach to solving when an object in question reaches zero velocity when the acceleration is not constant.

Most acceleration underwent by objects in the world are not constant. In fact, even objects accelerating under the influence of gravity isn't constant due to air resistance. Therefore, when determining the three crucial variables of acceleration, velocity, and position, one has to use calculus. However, some functions that express acceleration as a function of time is complex and hard to integrate. This gives rise to the numeric approach of using an excel spreadsheet to measure accurately measure acceleration, velocity, and position.

We entered the relevant information onto the excel spreadsheet and let the computer compute the values. The initial variables are the mass, velocity, burn rate, force, and change in time. Then the columns were filled down with time, acceleration, average acceleration, change in velocity, velocity, average velocity, displacement, and position. That's basically all there is to it.



Mo 6500 kg a given by F / (Mo - bt)
Vo 25 m/s (-8000) / (6500 - (1500-20)t)
20 kg/s
-8000 N
Δt 1 s
t a a_avg Δv v v_avg Δx x
0 -1.230769231 25 0
1 -1.234567901 -1.232668566 -1.232668566 23.76733143 24.38366572 24.38366572 24.38366572
2 -1.238390093 -1.236478997 -1.236478997 22.53085244 23.14909194 23.14909194 47.53275765
3 -1.242236025 -1.240313059 -1.240313059 21.29053938 21.91069591 21.91069591 69.44345356
4 -1.246105919 -1.244170972 -1.244170972 20.04636841 20.66845389 20.66845389 90.11190745
5 -1.25 -1.24805296 -1.24805296 18.79831545 19.42234193 19.42234193 109.5342494
6 -1.253918495 -1.251959248 -1.251959248 17.5463562 18.17233582 18.17233582 127.7065852
7 -1.257861635 -1.255890065 -1.255890065 16.29046613 16.91841117 16.91841117 144.6249964
8 -1.261829653 -1.259845644 -1.259845644 15.03062049 15.66054331 15.66054331 160.2855397
9 -1.265822785 -1.263826219 -1.263826219 13.76679427 14.39870738 14.39870738 174.6842471
10 -1.26984127 -1.267832027 -1.267832027 12.49896224 13.13287826 13.13287826 187.8171253
11 -1.27388535 -1.27186331 -1.27186331 11.22709893 11.86303059 11.86303059 199.6801559
12 -1.277955272 -1.275920311 -1.275920311 9.951178622 10.58913878 10.58913878 210.2692947
13 -1.282051282 -1.280003277 -1.280003277 8.671175346 9.311176984 9.311176984 219.5804717
14 -1.286173633 -1.284112458 -1.284112458 7.387062888 8.029119117 8.029119117 227.6095908
15 -1.290322581 -1.288248107 -1.288248107 6.098814781 6.742938834 6.742938834 234.3525296
16 -1.294498382 -1.292410481 -1.292410481 4.8064043 5.45260954 5.45260954 239.8051392
17 -1.298701299 -1.29659984 -1.29659984 3.509804459 4.158104379 4.158104379 243.9632435
18 -1.302931596 -1.300816447 -1.300816447 2.208988012 2.859396236 2.859396236 246.8226398
19 -1.307189542 -1.305060569 -1.305060569 0.903927443 1.556457727 1.556457727 248.3790975
20 -1.31147541 -1.309332476 -1.309332476 -0.405405034 0.249261204 0.249261204 248.6283587
21 -1.315789474 -1.313632442 -1.313632442 -1.719037475 -1.062221254 -1.062221254 247.5661375
     
                     
                                                                                 Acceleration
                                         acceleration= F( net) / m(t)= -8000 n /6500 kg- 20 kg/s * T
                                         acceleration (1)= -8000 n /6500-20* 1 = -1.234567901 m/s^2

                                                                               Change in Velocity
                                           Δv= average acceleration *Δt
                                        Δv= -1.234567901 m/s^2 * 1s=-1.234567901 m/s

                                                                       Velocity
                                                              velocity= Δv+ v ( initial)
                                            Velocity (1 s)= -1.23 m/s + 25 m/s=  23.77 m/s 
    
                                                                         Δ x
                                                             Δx =velocity average *ΔT 
                                                           Δx ( 1 s ) = 24.38 m/s * 1 s = 24.38 m

                                                       
  This lab didn't involve any physical measurement of any processes at all. All of the lab was on paper and excel spreadsheet. The problem was to figure out how far the elephant that had a variable acceleration with time would go before slowing down to a stop. The analytical approach is to use integral calculus to figure out velocity and position and then setting velocity of the elephant equal to zero and then plugging that time into the position function to find the displacement. The excel spreadsheet method allowed the computer to calculate numerically to great precision I might add, the distance that the elephant travels before coming to rest. The two answers from the two methods agree closely to a tenth of a meter. 

1. The two answers agree closely: analytical answer: 248.7 m , numerical answer: 248.9 m 

2. The time interval for doing the integration is small enough when there're a bunch of velocity values that are close to 0 by 0.1 m increment, and the distance values that correspond to the velocity values differ by 0.1 m increment. When the distance values appear to differ by smaller and smaller values so that the precision is sufficiently small, then the numerical result is good enough.

3. The elephant would go about 129 meters given the conditions. 
                   

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.